
WEBSERVER (2.0.0)

Embedded Webserver Library
This software library allows you to generate a webserver that communicates using the XMOS TCP/IP server
component.

Features

• Automatically package a file tree of web pages into data that be accessed on the device
• Store web pages in either program memory or on an attached SPI flash
• Call C/XC functions from within web page templates to access dynamic content
• Handle GET and POST HTTP requests
• Separate the handling of TCP traffic and the access of flash into different tasks passing data over XC

channels. Allowing you to integrate the webserver in other applications that already handle TCP or
access flash.

Typical Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores

Default 0 0 0 ~5.8K 1

Note that this does not include the TCP/IP stack (which is a separate library) or any web-pages stored in
memory.

Software version and dependencies

This document pertains to version 2.0.0 of this library. It is known to work on version 14.0.0 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_xtcp (>=4.0.0)

Related application notes

The following application notes use this library:

• AN00122 - Using the XMOS embedded webserver library

Copyright 2015 XMOS Ltd. 1 www.xmos.com
XM007215



WEBSERVER (2.0.0)

1 Usage

To use the library you need to add lib_webserver to the USED_MODULES variable in your application
Makefile.

Within your application you can also add the following files to configure the server:

web/ Directory containing the HTML and other files to be served by the webserver
web/webserver.conf A configuration file to control the generation of the web data
web_server_conf.h The file can be anywhere in your source tree and contains #defines for configuring

the webserver code.

1.1 Choosing the webserver mode

1.1.1 Configuring the webserver to run from program memory

The module is set up to run from program memory by default so no extra configuration is required.

1.1.2 Configuring the webserver to run from flash

To run from flash you need to:

1. Set the define WEB_SERVER_USE_FLASH to 1 in your web_server_conf.h file
2. Add the following lines to webserver.conf in your web/ directory:

[Webserver]
use_flash=true

This will cause the web pages to be packed into a binary image and placed into the application binary
directory. See §1.4 for details on how to write the data to SPI flash.

1.1.3 Configuring the webserver to run from flash with a separate flash task

To run from flash you need to:

1. Set the define WEB_SERVER_USE_FLASH to 1 in your web_server_conf.h file
2. Set the define WEB_SERVER_SEPARATE_FLASH_TASK to 1 in your web_server_conf.h file
3. Add the following lines to webserver.conf in your web/ directory:

[Webserver]
use_flash=true

This will cause the web pages to be packed into a binary image and placed into the application binary
directory. See §1.4 for details on how to write the data to SPI flash.

1.2 Creating the web pages

To create your web pages just place them in the web/ sub-directory of your application. This can include
text and images and be a file tree. For example, the demo application web tree is:

web/webserver.conf
web/index.html
web/form.html
web/dir1/page.html
web/dir2/page.html
web/images/xmos_logo.png

Copyright 2015 XMOS Ltd. 2 www.xmos.com
XM007215



WEBSERVER (2.0.0)

1.3 Writing dynamic content

With the HTML pages in the web directory. You can include dynamic content via {% ... %} tags. This will
evaluate the C expression within the tag. This expression has several C variables available to it:

• char *buf - a buffer to fill with the content to be rendered in place of the tag
• int connection_state - an integer representing the connection state of the current HTTP connec-

tion. This can be used with the functions in §3.3.
• int app_state - an integer representing the application state. This integer can be set with the

web_server_set_app_state().

The application must return the length of data it has placed in the buf variable.

All functions that are called by expressions in your web pages need to be prototyped in
web_server_conf.h

For example when the following HTML is rendered:

<p>{% my_function(buf) %}</p>

The web server will render up to the end of the first <p> tag and then call the my_function C/XC function
passing in the buf array to be filled.

The function my_function must be declared in web_server_conf.h e.g.:

int my_function(char buf[]);

The implementation of the function needs to be somewhere in your source tree:

int my_function(char buf[]) {
char msg[] = "Hello World!";
strcpy(buf, msg);
return sizeof(msg)-1;

}

Note that this example function returns the number of characters it has placed in the buffer (not including
the terminating ‘0’ character).

The web server will then insert these characters into the page. So the page returned to the client will be:

<p>Hello World!</p>

1.4 Writing the pages to SPI flash

If you configure the webserver to use flash then you need to place the data onto the attached SPI flash
before running your program. To do this use the xflash command.

The build of your program will place the data in a file called web_data.bin in your binary directory. You
can flash it using a command like:

xflash --boot-partition-size 0x10000 bin/myprog.xe --data bin/web_data.bin

See XM-000965-PC for more details on how to use xflash.

1.5 Integrating the webserver into your code

All functions in your code to call the webserver can be found in the web_server.h header:

Copyright 2015 XMOS Ltd. 3 www.xmos.com
XM007215

http://www.xmos.com/doc/XM-000965-PC/latest#xflash-manual


WEBSERVER (2.0.0)

#include <web_server.h>

1.5.1 Without SPI Flash

To use the webserver you must have an instance of an XTCP server running on your system. You can
then write a function that implements a task that handles tcp events. This may do other functions/handle
other tcp traffic as well as implementing the webserver. Here is a rough template of how the code should
look:

void tcp_handler(chanend c_xtcp) {
xtcp_connection_t conn;
web_server_init(c_xtcp, null, null);

// Initialize your other code here

while (1) {
select
{
case xtcp_event(c_xtcp,conn):

// handle other kinds of tcp traffic here

web_server_handle_event(c_xtcp, null, null, conn);
break;

// handle other events in your system here
}

}
}

1.5.2 Using SPI Flash

To use SPI flash you need to pass the ports to access the flash into the webserver functions. For example:

void tcp_handler(chanend c_xtcp, fl_SPIPorts &flash_ports) {
xtcp_connection_t conn;
web_server_init(c_xtcp, null, flash_ports);
while (1) {
select
{
case xtcp_event(c_xtcp, conn):
web_server_handle_event(c_xtcp, null, flash_ports, conn);
break;

}
}

}

See XM-000953-PC for details on the flash ports. You also need to define an array of flash devices
and specify the WEB_SERVER_FLASH_DEVICES and WEB_SERVER_NUM_FLASH_DEVICES defines in
web_server_conf.h to tell the web server which flash devices to expect.

1.5.3 Using SPI Flash in a separate task

If you configure the web server to use a separate task for flash you need to run two tasks. The TCP
handling tasks now takes a chanend to talk to the other task. For example:

Copyright 2015 XMOS Ltd. 4 www.xmos.com
XM007215

http://www.xmos.com/doc/XM-000953-PC/latest#libflash-api


WEBSERVER (2.0.0)

void tcp_handler(chanend c_xtcp, chanend c_flash) {
xtcp_connection_t conn;
web_server_init(c_xtcp, c_flash, null);
while (1) {
select
{
case xtcp_event(c_xtcp, conn):
web_server_handle_event(c_xtcp, c_flash, null, conn);
break;

case web_server_flash_response(c_flash):
web_server_flash_handler(c_flash, c_xtcp);
break;

}
}

When serving a web page the web_server_handle_event() may request data over the c_flash channel.
Later the flash task may respond and this is handled by the web_server_flash_response() case which will
then progress the TCP transaction.

The task handling the flash should look something like this:

void flash_handler(chanend c_flash, fl_SPIPorts &flash_ports) {
web_server_flash_init(flash_ports);
// Initialize your application code here
while (1) {
select {
case web_server_flash(c_flash, flash_ports);
// handle over application events here
}

}
}

Again this task may perform other application tasks (that may access the SPI flash) as well as assisting
the web server.

1.5.4 Communicating with other tasks in webpage content

It is possible to communicate with other tasks from dynamic content calls when rendering the webpage.
The top-level main of your program will be something like the following:

int main() {
...
par {
...
on tile[1]: xtcp(c_xtcp, 1, i_mii,

null, null, null,
i_smi, ETHERNET_SMI_PHY_ADDRESS,
null, otp_ports, ipconfig);

on tile[1]: tcp_handler(c_xtcp[0]);
...
}

}

Where tcp_handler is the task that calls the web event handler and serves the web pages. Now suppose,
we add a new task that we want to communicate to via the web page (in this example, an I2C bus):

Copyright 2015 XMOS Ltd. 5 www.xmos.com
XM007215



WEBSERVER (2.0.0)

int main() {
...
par {
...
on tile[1]: xtcp(c_xtcp, 1, i_mii,

null, null, null,
i_smi, ETHERNET_SMI_PHY_ADDRESS,
null, otp_ports, ipconfig);

on tile[1]: tcp_handler(c_xtcp[0], i_i2c);
on tile[1]: i2c_master(i_i2c, 1, p_scl, p_sda, 100);
...
}

}

The i_i2c connection to the i2c_master task is passed to the tcp_handler.

The tcp_handler needs to store the connection to the I2C task as a global to allow the web-page function
to access it. This is done via a xC movable pointer at the start of the task:

client i2c_master_if * movable p_i2c;

void tcp_handler(chanend c_xtcp, client i2c_master_if i2c) {
client i2c_master_if * movable p = &i2c;
p_i2c = move(p);

xtcp_connection_t conn;
web_server_init(c_xtcp, null, null);
...

This has moved a pointer to the I2C interface to the global variable p_i2c. This can now be used in a
web-page function. In a seperate file you can write:

extern client i2c_master_if * movable p_i2c;

void do_i2c_stuff() {
i2c_regop_res_t result;
result = p_i2c->write_reg(0x45, 0x07, 0x12);

}

This function can be called from a dynamic expression in a webpage e.g.:

{% do_i2c_stuff() %}

Remember that functions call from dynamic webpage content must be prototyped in the
web_server_conf.h header in your application.

Copyright 2015 XMOS Ltd. 6 www.xmos.com
XM007215



WEBSERVER (2.0.0)

2 API - Configuration defines

These defines can either be set in your Makefile (by adding -DNAME=VALUE to XCC_FLAGS) or in a file
called web_server_conf.h within your application source tree (this will get examined by the library).

Macro WEB_SERVER_PORT

Description This define controls what port the server listens on.

Macro WEB_SERVER_USE_FLASH

Description This define controls whether the web server gets the pages from SPI flash or not.
Set to 1 to use flash and 0 not to use flash.

Macro WEB_SERVER_SEPARATE_FLASH_TASK

Description This define sets whether the flash access should be done within the web server func-
tions or offloaded via a channel to another task.

Macro WEB_SERVER_FLASH_DEVICES

Description This define should be set to the name of a global variable that defines the array of
possible flash devices that the web server connects to.

Macro WEB_SERVER_NUM_FLASH_DEVICES

Description This define sets the size of the array of possible flash devices defined by the variable
set by.

Macro WEB_SERVER_POST_RENDER_FUNCTION

Description This define can be set to a function that will be run after every rendering of part of a
web page. The function gets passed the application and connection state and must
have the type:

void render(int app_state, int connection_state)

Copyright 2015 XMOS Ltd. 7 www.xmos.com
XM007215



WEBSERVER (2.0.0)

3 API

All functions can be found in the web_server.h header:

#include <web_server.h>

3.1 Web Server Functions

The following functions can be uses in code that has a channel connected to an XTCP server task. The
functions handle all the communication with the tcp stack.

Function web_server_init

Description Initialize the web server.
This function initializes the webserver.

Type void web_server_init(chanend c_xtcp,
chanend ?c_flash,
fl_SPIPorts &?flash_ports)

Parameters c_xtcp chanend connected to the xtcp server

c_flash If the webserver is configured to use flash where flash access is in a
separate task. Then this chanend parameter needs to connect to that
task. Otherwise it should be set to null.

flash_ports
If the webserver is configured to use flash and flash access is not in a
separate task. Then this parameter should supply the ports to access
the flash. Otherwise it should be set to null.

Function web_server_handle_event

Description Handle a webserver tcp event.
This function should be called when a TCP event is signalled from the xtcp server. If
the event is for the webserver port, the function will handle the event.

Type void
web_server_handle_event(chanend c_xtcp,

chanend ?c_flash,
fl_SPIPorts &?flash_ports,
xtcp_connection_t &conn)

Continued on next page

Copyright 2015 XMOS Ltd. 8 www.xmos.com
XM007215



WEBSERVER (2.0.0)

Parameters c_xtcp chanend connected to the xtcp server

c_flash If the webserver is configured to use flash where flash access is in a
separate task. Then this chanend parameter needs to connect to that
task. Otherwise it should be set to null.

flash_ports
If the webserver is configured to use flash and flash access is not in a
separate task. Then this parameter should supply the ports to access
the flash. Otherwise it should be set to null.

conn The tcp connection structure containing the new event

Function web_server_set_app_state

Description Set the application state of the web server.
This sets a single integer (which could be cast from a pointer in C) to be the applica-
tion state of the server. This state variable can be accessed by the dynamic content
of the server.

Type void web_server_set_app_state(int st)

3.2 Separate Flash Task Functions

If WEB_SERVER_SEPARATE_FLASH_TASK is enabled then a task with access to flash must use these func-
tions. This task will need to follow a pattern similar to:

void flash_handler(chanend c_flash) {
web_server_flash_init(flash_ports);
while (1) {
select {
// Do other flash handling stuff here
case web_server_flash(c_flash, flash_ports);

}
}

}

Function web_server_flash_init

Description This function intializes the separate flash task access to the web server data.

Type void
web_server_flash_init(fl_SPIPorts &flash_ports)

Parameters flash_ports
The ports to access SPI flash (see libflash)

Copyright 2015 XMOS Ltd. 9 www.xmos.com
XM007215



WEBSERVER (2.0.0)

Function web_server_flash

Description This function handles the request from the tcp handling task to get some data from
flash.

Type select web_server_flash(chanend c_flash, fl_SPIPorts &flash_ports)

Parameters c_flash Chanend connected to the tcp handling functions of the webserver

flash_ports
The ports to access SPI flash (see libflash)

In addition the task handling the xtcp connnections needs to respond to cache events from the flash
handling task. This task will need to follow a pattern similar to:

void tcp_handler(chanend c_xtcp, chanend c_flash) {
xtcp_connection_t conn;
web_server_init(c_xtcp, c_flash, null);
while (1) {
select
{
case xtcp_event(c_xtcp, conn):
// handle non web related tcp events here
web_server_handle_event(c_xtcp, c_flash, null, conn);
break;

case web_server_flash_response(c_flash):
web_server_flash_handler(c_flash, c_xtcp);
break;

}
}

}

Function web_server_flash_response

Description Select handler to react to a cache response from the.
This select handler can be used in a select case to handle the response from
the separate flash task with some data. It should be followed by a call to
web_server_flash_handler().

Type void
web_server_flash_response(chanend c_flash)

Parameters c_flash chanend connected to separate flash task

Function web_server_flash_handler

Continued on next page

Copyright 2015 XMOS Ltd. 10 www.xmos.com
XM007215



WEBSERVER (2.0.0)

Description Handle incoming data from flash thread.
This function should be called in the body of a select case that responds to the flash
task via web_server_flash_reponse().

Type void
web_server_flash_handler(chanend c_flash, chanend c_xtcp)

Parameters c_flash chanend connected to separate flash task

c_xtcp chanend connected to the xtcp server

3.3 Functions that can be called during page rendering

When functions are called during page rendering (either via the {% ... %} template escaping in the
webpages or via the WEB_SERVER_POST_RENDER_FUNCTION function), the following utility functions can
be called.

Function web_server_get_param

Description Get a web page parameter.
This function looks up a parameter that has been passed to the current page request
via either a GET or POST request.

Type char*
web_server_get_param(const char *param,

int connection_state)

Parameters param The name of the parameter to look up

connection_state
The connection state of the page being served

Returns a pointer to the parameters value. If the parameter was not passed in as part of the
HTTP request then NULL is returned.

Function web_server_copy_param

Description Copy a web page parameter.
This function looks up a parameter that has been passed to the current page request
via either a GET or POST request and copies it into a supplied buffer

Type int
web_server_copy_param(const char param[],

int connection_state,
char buf[])

Continued on next page

Copyright 2015 XMOS Ltd. 11 www.xmos.com
XM007215



WEBSERVER (2.0.0)

Parameters param The name of the parameter to look up

connection_state
The connection state of the page being served

buf The buffer to copy the parameter into

Returns the length of the copied parameter value. If the parameter was not passed in as part
of the HTTP request then 0 is returned.

Function web_server_is_post

Description Determine whether the current page request was a POST request.

Type int
web_server_is_post(int connection_state)

Parameters connection_state
The connection state of the page being served

Returns non-zero if the page request is a POST request. Zero otherwise.

Function web_server_get_current_file

Description Return the file handle of the current page.

Type file_handle_t
web_server_get_current_file(int connection_state)

Parameters connection_state
The connection state of the page being served

Returns A file handle for the current page. See simplefs.h for details.

Function web_server_end_of_page

Description Have we served the entire page.
This function is usually used in the WEB_SERVER_POST_RENDER function to determine
whether the whole page has been fully served (for example to update a page visit
counter).

Type int
web_server_end_of_page(int connection_state)

Continued on next page

Copyright 2015 XMOS Ltd. 12 www.xmos.com
XM007215



WEBSERVER (2.0.0)

Returns non-zero if the page has been fully served. Zero otherwise.

Copyright 2015 XMOS Ltd. 13 www.xmos.com
XM007215



WEBSERVER (2.0.0)

APPENDIX A - Known Issues

There are no known issues with this library.

Copyright 2015 XMOS Ltd. 14 www.xmos.com
XM007215



WEBSERVER (2.0.0)

APPENDIX B - Embedded webserver library change log

B.1 2.0.0

• Rearrange to new file structure
• Change examples to work with new xtcp and ethernet libraries

B.2 1.0.3

• Various documentation updates
• Changes to dependencies:

– sc_xtcp: 3.1.3rc0 -> 3.2.1rc0

* Fixed channel protocol bug that caused crash when xCONNECT is

* Various documentation updates

* Fixes to avoid warning in xTIMEcomposer studio version 13.0.0

– sc_ethernet: 2.2.4rc0 -> 2.3.1rc0

* Fix invalid inter-frame gaps.

* Adds AVB-DC support to sc_ethernet

* Various documentation updates

* Fixed timing issue in MII rx pins to work across different tools

* Moved to version 1.0.3 of module_slicekit_support

* Fixed issue with MII receive buffering that could cause a crash if a packet was dropped

– sc_slicekit_support: 1.0.3rc0 -> 1.0.4rc0

* Fix to the metainfo.

– sc_wifi: 1.0.0rc0 -> 1.1.2rc0

* Other document updates

* Document updates conforming to xSOFTip style.

* Resolve connection to router bug

– sc_util: 1.0.2rc0 -> 1.0.4rc0

* module_logging now compiled at -Os

* debug_printf in module_logging uses a buffer to deliver messages unfragmented

* Fix thread local storage calculation bug in libtrycatch

* Fix debug_printf itoa to work for unsigned values > 0x80000000

* Remove module_slicekit_support (moved to sc_slicekit_support)

* Update mutual_thread_comm library to avoid communication race conditions

– sc_spi: 1.3.0rc1 -> 1.4.0rc0

* Added build option to allow SD card driver compatibility

* Updated documents

* Updated documents

B.3 1.0.2

• Update to xtcp v3.1.3

B.4 1.0.1

• Fix content-length handling bug
• Enable use with WIFI module

Copyright 2015 XMOS Ltd. 15 www.xmos.com
XM007215



WEBSERVER (2.0.0)

B.5 1.0.0

• Initial Version

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 16 www.xmos.com
XM007215


	Embedded Webserver Library
	Usage
	Choosing the webserver mode
	Configuring the webserver to run from program memory
	Configuring the webserver to run from flash
	Configuring the webserver to run from flash with a separate flash task

	Creating the web pages
	Writing dynamic content
	Writing the pages to SPI flash
	Integrating the webserver into your code
	Without SPI Flash
	Using SPI Flash
	Using SPI Flash in a separate task
	Communicating with other tasks in webpage content


	API - Configuration defines
	API
	Web Server Functions
	Separate Flash Task Functions
	Functions that can be called during page rendering

	Known Issues
	Embedded webserver library change log
	2.0.0
	1.0.3
	1.0.2
	1.0.1
	1.0.0


